# Fast Corrector Power Supply Control for SPEAR

Stephanie Allison Till Straumann SSRL/SLAC

### Overview

- System Performance Requirements
- MCOR 30 Hardware
- IOC Software Architecture
- Feature Summary
- Q'n A

# Spear Corrector Power Supplies

- 108 bipolar channels
- 8 channels/crate
- +/- 30A current / channel
- ■1 "bulk" supply / crate
- Throughput: setpoint update@4kHz (small signal)
- 24 bit setpoint DAC resolution
- 3 24bit readback ADCs (currents, diff. load voltage)
- 16-bit calibration DAC
- **EPICS Controls**



# MCOR 30 Bipolar Power Supply Hardware

- Proprietary crate hosts 8 analog +/-30A channels
- Piggyback setpoint DAC, readback
- Controlled by off-the shelf SBC
- "Franken(stein) board" bridges backplane to VME
- 2nd (dedicated) Ethernet (PMC) for fast setpoint transmission. Setpoint packets are broadcast to all PS crates.
- Analog backdoor



#### MCOR 30 Control Software

- ■8 virtually independent channels
- 1 high priority RT task runs at 4kHz clock rate

drive setpoints either from waveform table orfrom dedicated ethernet link

store ADC readbacks (waveform) scaling according to AI/AO conversion algorithm

run decimation filters for slow readbacks timestamp data

event triggered setpoint tables allow for synchronization of multiple crates

tag data with 4kHz timestamps

- Device support integrates PVs with RT layer. CA is used for I/O on LAN.
- Slow monitors & controls of non-RT critical data use EPICS directly.



## Summary

- Analog PS
- High resolution DAC + readback ADCs
- Low res. calibration DAC
- ■4kHz update rate
- Slow controls, setup, setpoint tables use EPICS
- 4kHz streamed setpoints over dedicated ethernet
- Synchronization to global 4kHz timestamp/clock